无监督的视频域适应是一项实用但具有挑战性的任务。在这项工作中,我们第一次从脱离视图中解决了它。我们的关键想法是在适应过程中将与域相关的信息从数据中删除。具体而言,我们考虑从两组潜在因素中生成跨域视频,一个编码静态域相关信息,另一个编码时间和语义相关的信息。然后开发转移顺序的VAE(Transvae)框架以建模这种产生。为了更好地适应适应,我们进一步提出了几个目标,以限制Transvae中的潜在因素。与几种最先进的方法相比,对UCF-HMDB,小丑和Epic-Kitchens数据集进行了广泛的实验验证了Transvae的有效性和优势。代码可在https://github.com/ldkong1205/transvae上公开获取。
translated by 谷歌翻译
场景细分和分类(SSC)是迈向视频结构分析领域的关键步骤。直观地,共同学习这两个任务可以通过共享共同信息相互促进。但是,场景细分更多地涉及相邻镜头之间的局部差异,而分类需要场景段的全局表示,这可能导致该模型在训练阶段中由两个任务之一主导。在本文中,从替代角度来克服上述挑战,我们将这两个任务通过一种预测镜头链接的新形式团结到一个任务中:链接连接两个相邻的镜头,表明它们属于同一场景或类别。最后,我们提出了一个一般的单阶段多模式顺序链接框架(OS-MSL),以通过将两个学习任务改革为统一的任务来区分和利用两倍的语义。此外,我们量身定制一个称为diffcorrnet的特定模块,以明确提取镜头之间的差异和相关性信息。对从现实世界应用收集的全新大规模数据集和电影塞恩进行了广泛的实验。两种结果都证明了我们提出的方法对强基础的有效性。
translated by 谷歌翻译
最近,视觉变压器(VIT),具有自我关注(SA)作为事实上的成分,在计算机视觉社区中表现出很大的潜力。为了在效率和性能之间进行权衡,一组作品仅仅在本地补丁中执行SA操作,而全局上下文信息被放弃,这对于可视识别任务是不可或缺的。为了解决这个问题,随后的全球本地VITS在模型中以并行或替代方式将本地SA与全球范围内纳入本地SA。然而,令人遗憾地组合的局部和全局上下文可能存在各种视觉数据的冗余,并且每个层内的接收场是固定的。或者,更优雅的方式是全局和本地上下文可以自适应地贡献本身以适应不同的视觉数据。为实现这一目标,我们本文提出了一种新的Vit架构,称为NOMMER,可以动态提名视觉变压器中的协同全球本地背景。通过调查我们提出的NOMMER的工作模式,我们进一步探讨了哪些上下文信息。有益于这种“动态提名”机制,没有钟声和吹口哨,不仅可以在Imagenet上达到84.5%的前1个分类准确性,只有73米的参数,也显示了对致密预测任务的有希望的性能,即对象检测和语义分割。代码和模型将在〜\ url {https://github.com/nommer1125/nommer中公开可用。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Reinforcement Learning (RL) is currently one of the most commonly used techniques for traffic signal control (TSC), which can adaptively adjusted traffic signal phase and duration according to real-time traffic data. However, a fully centralized RL approach is beset with difficulties in a multi-network scenario because of exponential growth in state-action space with increasing intersections. Multi-agent reinforcement learning (MARL) can overcome the high-dimension problem by employing the global control of each local RL agent, but it also brings new challenges, such as the failure of convergence caused by the non-stationary Markov Decision Process (MDP). In this paper, we introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches. The OPNDQN algorithm solves the problem that traditional algorithms cannot be used in large state-action space traffic models by utilizing a fictitious game approach at each iteration to find the nash equilibrium among neighboring intersections, from which no intersection has incentive to unilaterally deviate. One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process because it considers the mutual influence among neighboring intersections by sharing their actions. On the other hand, for training a large traffic network, the convergence rate of OPNDQN is higher than that of existing MARL approaches because it does not incorporate all state information of each agent. We conduct an extensive experiments by using Simulation of Urban MObility simulator (SUMO), and show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译